MECGaNX13
8.6 to 10.4 GHz GaN HEMT Power Amplifier

Main Features

- 0.25µm GaN HEMT Technology
- 8.6 – 10.4 GHz full performances Frequency Range
- 13W Output Power @ Pin 24 dBm
- 40% PAE @ Pin 24 dBm
- 24 dB Linear Gain
- Bias: Vd = 25V, Id = 480 mA, Vg = -2.85V (Typ.)
- Chip Size: 4.5 x 4.0 x 0.1 mm

Product Description

MECGaNX13 is a GaN HEMT based High Power Amplifier designed by MEC for X-Band applications and fabricated on 0.25µm GaN on SiC process.

The MECGaNX13 provides more than 13W of output power in the frequency range from 8.6 GHz to 10.4 GHz with a PAE higher than 38% and 24 dB of Linear Gain.

The MECGaNX13 is fully matched to 50 Ω with DC decoupling capacitors on both Input and Output ports. Bond Pad are gold plated for compatibility with thermo-compression bonding process.

Applications

- Radar
- Telecom
MECGaNX13

8.6 to 10.4 GHz GaN HEMT Power Amplifier

Main Characteristics

Test Conditions: $T_{\text{base,plate}} = 25^\circ \text{C}$, $V_d = 25 \text{ V}$, $I_{dq} = 480 \text{ mA}$, Pulse Width = 50 μs, Duty Cycle = 15%

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>8.6</td>
<td></td>
<td>10.4</td>
<td>GHz</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>10</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>10</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Power @ Pin = 24 dBm</td>
<td>13.5</td>
<td></td>
<td>14.5</td>
<td>W</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>38</td>
<td></td>
<td>44</td>
<td>%</td>
</tr>
<tr>
<td>Drain Supply Voltage</td>
<td></td>
<td>25</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply Quiescent Drain Current</td>
<td></td>
<td>480</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply Drain Current</td>
<td>1.2</td>
<td></td>
<td>1.45</td>
<td>A</td>
</tr>
<tr>
<td>Gate Voltage</td>
<td></td>
<td>-2.85</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

* Performances described in this document are based on preliminary on-jig characterization. More details and new parameter will be carried out by the ongoing test campaign.
Typical Measured Performances

Linear Gain, Input and Output Return Loss Vs. Frequency

Output Power and Gain Vs. Input Power

8.6 GHz; 9.5 GHz; 10.4 GHz
MECGaNX13
8.6 to 10.4 GHz GaN HEMT Power Amplifier

PAE and Drain Current Vs. Input Power

--- 8.6 GHz; --- 9.5 GHz; --- 10.4 GHz

Output Power and PAE @ Pin = 24 dBm Vs. Frequency
Gain and Drain Current @ Pin = 24 dBm Vs. Frequency

- 5/8 -

Preliminary Data Sheet
CONFIDENTIAL
MEC – Microwave Electronics for Communications
www.mec-mmic.com
A tolerance of ± 35µm has to be considered for chip dimensions.

- Chip Thickness is 100 µm ± 10 µm
- RF Pads [IN, OUT] = 100µm x 200µm
- DC Pads [1, 3, 4, 5, 8, 9, 10, 12] = 100µm x 100µm
- DC Pads [2, 11] = 200µm x 100µm
- DC Pads [6, 7] = 550µm x 100µm

<table>
<thead>
<tr>
<th>Bond Pad #</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>RFin</td>
<td>Input RF Port</td>
</tr>
<tr>
<td>OUT</td>
<td>RFout</td>
<td>Output RF Port</td>
</tr>
<tr>
<td>4, 9, 12</td>
<td>Vg</td>
<td>Gate Negative Supply Voltage</td>
</tr>
<tr>
<td>2, 6, 7, 11</td>
<td>Vd</td>
<td>Drain Positive Supply Voltage</td>
</tr>
<tr>
<td>3, 5, 8, 10</td>
<td>GND</td>
<td>Ground Pads – Not Connected</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Not Connected</td>
</tr>
</tbody>
</table>
Assembly Recommendations

Eutectic Die bond using AuSn (80/20) solder is recommended.
- Great care must be used for thermal dimensioning.
- The backside of the die is the Source (ground) contact.
- Thermosonic ball or wedge bonding are the preferred connection methods.
- Gold wire must be used for connections.

Bias Procedure

Bias-Up
1. Vg set to -5 V.
2. Vd set to +25 V.
3. Adjust Vg until quiescent Id is 480 mA (Vg = -3.0 V Typical).
4. Apply RF signal.

Bias-Down
1. Turn off RF signal.
2. Reduce Vg to -5 V (Id0 ≈ 0 mA).
3. Set Vd to 0 V.
4. Set Vg to 0 V.
Contact Information

For additional technical Information and Requirements:
Email: contact.mec@mec-mmic.com Tel: +39 0516333403

For sales Information and Requirements:
Email: sales@mec-mmic.com Tel: +39 0637511124

Notice

The furnished information is believed to be reliable. However, performances and specifications contained herein are based on preliminary characterizations and then susceptible to possible variations. On the basis of customer requirements the product can be tested and characterized in specific operating conditions and, if needed, tuned to meet custom specifications.
The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.