MECGaNWBSPDT
DC-20 GHz GaN HEMT SPDT

Main Features

- 0.25µm GaN HEMT Technology
- DC – 20 GHz full performance Frequency Range
- Insertion Loss @ 12 GHz = 1.4 dB
- Insertion Loss @ 20 GHz = 1.7 dB
- Isolation @ 12 GHz > 50 dB
- Isolation @ 20 GHz > 45 dB
- P1dB > 33 dBm
- Input Power Handling = 40 dBm
- Reflective

- Bias: Vc = 0/ -30V
- Chip Size: 1.50 x 2.00 x 0.10 mm³

Product Description

MECGaNWBSPDT is a 0.25µm GaN HEMT Wide Band GHz SPDT Switch designed and tested by MEC for DC - 20 GHz Band applications.

In the frequency range from DC to 12 GHz MECGaNWBSPDT provides less than 1.4 dB of small signal insertion loss and more than 50 dB of isolation. In the frequency range from 12 to 20 GHz provides less than 1.7 dB of small signal insertion loss and more than 45 dB of isolation.

The maximum input power handling of the MECGaNWBSPDT is 40 dBm.

Typical Applications

- Commercial and Military Radar
- Communications
- Test Instrumentation

Measured Data

T = 25 degC - CW
Main Characteristics

Test Conditions: $T_{\text{base_plate}} = 25^\circ \text{C}$, Reception ($V_{c1} = -30 \text{ V}, V_{c2} = -0 \text{ V})$ - CW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>DC</td>
<td></td>
<td>22</td>
<td>GHz</td>
</tr>
<tr>
<td>Insertion Loss - On State</td>
<td>1.4</td>
<td></td>
<td>2</td>
<td>dB</td>
</tr>
<tr>
<td>Isolation - Off State</td>
<td></td>
<td></td>
<td>45</td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td></td>
<td></td>
<td>15</td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td></td>
<td></td>
<td>15</td>
<td>dB</td>
</tr>
<tr>
<td>Return Loss @ Off State Port (Reflective)</td>
<td>-2</td>
<td></td>
<td>-1</td>
<td>dB</td>
</tr>
<tr>
<td>$P_{1\text{dB}}$</td>
<td>33</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Input Power Handling</td>
<td>40</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Gate Control Voltage V_{c1}</td>
<td>-30 (0)</td>
<td></td>
<td>-25 (1)</td>
<td>V</td>
</tr>
<tr>
<td>Gate Control Voltage V_{c2}</td>
<td>0 (-30)</td>
<td></td>
<td>1 (-25)</td>
<td>V</td>
</tr>
<tr>
<td>Control Current</td>
<td></td>
<td></td>
<td>0.5</td>
<td>mA</td>
</tr>
</tbody>
</table>
Insertion Loss, Isolation and Return Loss

Test Conditions: $T_{\text{base_plate}} = 25^\circ\text{C}$, $Vc1 = 0\ \text{V}$, $Vc2 = -30\ \text{V}$ - CW

<table>
<thead>
<tr>
<th>Function Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF path Selected</td>
</tr>
<tr>
<td>Out1</td>
</tr>
<tr>
<td>Out2</td>
</tr>
</tbody>
</table>
MECGaNWBSPDT

DC-20 GHz GaN HEMT SPDT

Bond Pad Configuration & Assembly Recommendations

Bond Pad Configuration

![Bond Pad Layout](image)

<table>
<thead>
<tr>
<th>Bond Pad #</th>
<th>Connection</th>
<th>External Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN, Out1 and Out2</td>
<td>2 Bonding Wires L_bond = 0.3nH</td>
<td>No external components required (Internal Series Resistance: Rs=4kΩ)</td>
</tr>
<tr>
<td>Vc1, Vc2</td>
<td>L_bond ≤ 1 nH</td>
<td></td>
</tr>
</tbody>
</table>

Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.

Gold wire must be used for connections.

Bias Procedure

Bias-Up

1. Vc1 and Vc2 sets to Control Voltage.
2. Apply RF signal.

Bias-Down

1. Turn off RF signal.
2. Turn off Vc1, Vc2.
Contact Information

For additional technical Information and Requirements:
Email: contact.mec@mec-mmic.com Tel: +39 0516333403

For sales Information and Requirements:
Email: sales@mec-mmic.com Tel: +39 0637511124

Notice

The furnished information is believed to be reliable. However, performances and specifications contained herein are based on preliminary characterizations and then susceptible to possible variations. On the basis of customer requirements the product can be tested and characterized in specific operating conditions and, if needed, tuned to meet custom specifications.
The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.