Main Features

- 0.25 µm GaN HEMT Technology
- 7.4 – 11.4 GHz full performance Frequency Range
- Small Signal Gain > 23 dB
- Noise Figure: 1.6 dB
- P1dB > 22 dBm, Psat > 26 dBm
- Bias: Vd = 10 V, Id = 120 mA, Vg = -2.7 V (Typ.)
- Chip Size: 3 x 2.02 x 0.1 mm³

Product Description

MECGaNLNAX is a 0.25 µm GaN HEMT based Low Noise Amplifier designed and tested by MEC for X-Band applications.

In the frequency range from 7.4 GHz to 11.6 GHz MECGaNLNAX provides more than 23 dB of linear gain with ±0.5 dB of gain flatness and 1.6 dB of noise figure.

In addition to the high electrical performances, this GaN LNA provides an high level of input power robustness being capable of surviving up to 24 dBm without degrading its performance.

Typical Applications

- Radar
- Telecom

Measured Data

![Linear Gain and Noise Figure](image_url)
X-Band GaN HEMT Low Noise Amplifier

Main Characteristics

Test Conditions: $T_{\text{base_plate}} = 25 \, ^\circ\text{C}$, $V_d = 10 \, \text{V}$, $I_{dq} = 120 \, \text{mA}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>7.4</td>
<td>11.6</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>23</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>1.6</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>-15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>-15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Power at 1 dB of Gain Compression*</td>
<td>22.5</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output Power at Saturation*</td>
<td>26.5</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Max. Overdrive Input Power</td>
<td></td>
<td>24</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Drain Supply Voltage</td>
<td>10</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply Quiescent Drain Current</td>
<td>120</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>DC Power Consumption</td>
<td>1.2</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>DC Power Consumption at 1 dB of Gain Compr.</td>
<td>1.2</td>
<td></td>
<td></td>
<td>W</td>
</tr>
</tbody>
</table>
Small Signal Measurements

Test Conditions: $T_{\text{base, plate}} = 25^\circ \text{C}$, $V_d = 10 \text{ V}$, $I_{dq} = 120 \text{ mA}$

Linear Gain and Noise Figure

- Linear Gain [dB]
- Noise Figure [dB]

Input and Output Return Loss

- S_{11}, S_{22} [dB]

- 3/9 -

Preliminary Data Sheet

MEC – Microwave Electronics for Communications

www.mec-mmic.com

Rev. A 19/05/2015
MECGaNLNAX
X-Band GaN HEMT Low Noise Amplifier

Broadband Small Signal Measurements

Input and Output Return Loss

![Graph showing S11 and S22 dB vs Frequency (GHz)]

Linear and Reverse Gain

![Graph showing S21 and S12 dB vs Frequency (GHz)]

- 4/9 -

Preliminary Data Sheet

Rev. A 19/05/2015

MEC – Microwave Electronics for Communications
www.mec-mmic.com
Measured Performances Vs. Pin @ Freq. [8.6, 9, 9.4, 10.2, 10.6] GHz

Test Conditions: $T_{\text{base, plate}} = 25$ °C, $V_d = 10$ V, $I_{dq} = 120$ mA

Output Power Vs. Input Power

Drain Current Vs. Input Power
Test Conditions: $T_{\text{base_plate}} = 25 \, ^\circ\text{C}$, $V_d = 10 \, \text{V}$, $I_{dq} = 120 \, \text{mA}$

Gain Vs. Input Power

Gain Compression Vs. Input Power

Gain [dB]

Pin [dBm]

Gain Comp. [dB]

Pin [dBm]
Test Conditions: $T_{\text{base, plate}} = 25 \, ^\circ \text{C}$, $V_d = 10 \, \text{V}$, $I_{dq} = 120 \, \text{mA}$

- $P_{1\text{dB}}$ condition reached at $P_{\text{in}} = 0 \, \text{dBm}$
- $P_{3\text{dB}}$ condition reached at $P_{\text{in}} = 5 \, \text{dBm}$
- P_{Sat} condition reached at $P_{\text{in}} = 10 \, \text{dBm}$
Bond Pad Configuration & Assembly Recommendations

<table>
<thead>
<tr>
<th>Bond Pad #</th>
<th>Connection</th>
<th>External Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN and OUT</td>
<td>2 Bonding Wires</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$L_{\text{bond}} = 0.3,\text{nH}$</td>
<td></td>
</tr>
<tr>
<td>1, 3, 5 Vg</td>
<td>$L_{\text{bond}} \leq 1,\text{nH}$</td>
<td>$C_1 = 100,\text{pF/10V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2 = 10,\text{nF/10V}$</td>
</tr>
<tr>
<td>2, 4, 6, Vd</td>
<td>$L_{\text{bond}} \leq 1,\text{nH}$</td>
<td>$C_1 = 100,\text{pF/50V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2 = 10,\text{nF/50V}$</td>
</tr>
</tbody>
</table>

Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.

Gold wire must be used for connections.

Bias Procedure

Bias-Up
1. V_g set to -5 V.
2. V_d set to +10 V.
3. Adjust V_g until quiescent I_d is 120 mA ($V_g = -2.7$ V Typical).
4. Apply RF signal.

Bias-Down
1. Turn off RF signal.
2. Reduce V_g to -5 V ($I_{d0} \approx 0$ mA).
3. Set V_d to 0 V.
4. Turn off V_d.
5. Turn off V_g.
Contact Information

For additional technical Information and Requirements:
Email: contact.mec@mec-mmic.com Tel: +39 0516333403

For sales Information and Requirements:
Email: sales@mec-mmic.com Tel: +39 0637511124

Notice

The furnished information is believed to be reliable. However, performances and specifications contained herein are based on preliminary characterizations and then susceptible to possible variations. On the basis of customer requirements the product can be tested and characterized in specific operating conditions and, if needed, tuned to meet custom specifications.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.