MEC25XDRA

X-Band 0.5 Watt Power Amplifier

Main Features

- 0.25µm GaAs pHEMT Technology
- 8.9–11.0 GHz full performance Frequency Range
- Small Signal Gain > 21 dB
- Input Output RL > 12 dB
- P1dB > 27 dBm

- Bias: Vd = 6V, Id = 190mA, Vg = -0.5 V (Typ.)

- Chip Size: 1.98 x 1.80 x 0.07 mm³

Typical Applications

- Radar
- Point-to-Point Radio
- X Band Driver

Measured Data

Image of graph showing linear gain, return losses vs. frequency
Main Characteristics

Test Conditions: $T_{\text{base_plate}} = 25^\circ\text{C}$, $V_d = 6\ \text{V}$, $I_{\text{dq}} = 190\ \text{mA}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>8.9</td>
<td></td>
<td>11.0</td>
<td>GHz</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>21</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td></td>
<td>-15</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td></td>
<td>-12</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Power at 1 dB of Gain Compression</td>
<td>27</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Drain Supply Voltage</td>
<td>6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply Quiescent Drain Current</td>
<td>190</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>PAE</td>
<td>40</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>
MEC25XDRA - Selected Measurements

Test Conditions: \(T_{\text{base plate}} = 25^\circ \text{C} \), \(V_d = 6 \text{ V} \), \(I_{\text{dq}} = 190 \text{ mA} \)

![Graph showing linear gain, return losses vs. frequency and input power vs. gain](image)

Test Conditions: \(T_{\text{base plate}} = 25^\circ \text{C} \), \(V_d = 6 \text{ V} \), \(I_{\text{dq}} = 190 \text{ mA} \) - Input Power = 7 dBm

![Graph showing output power, gain vs. frequency and PAE, drain current vs. frequency](image)
Bond Pad Configuration & Assembly Recommendations

<table>
<thead>
<tr>
<th>Bond Pad #</th>
<th>Connection</th>
<th>External Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN and OUT</td>
<td>2 Bonding Wires</td>
<td>L_{bond} = 0.3nH</td>
</tr>
<tr>
<td>1, 3 Vg</td>
<td>L_{bond} ≤ 1 nH</td>
<td>C_{1} = 100pF/10V</td>
</tr>
<tr>
<td>2, 4, Vd</td>
<td>L_{bond} ≤ 1nH</td>
<td>C_{1} = 100pF/50V</td>
</tr>
</tbody>
</table>

Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.

Gold wire must be used for connections.

Bias Procedure

Bias-Up

1. Vg set to -1.5 V.
2. Vd set to +6 V.
3. Adjust Vg until quiescent Id is 190 mA (Vg = -0.5 V Typical).
4. Apply RF signal.

Bias-Down

1. Turn off RF signal.
2. Reduce Vg to -1.5 V (Id0 ≈ 0 mA).
3. Set Vd to 0 V.
4. Turn off Vd.
5. Turn off Vg.
Contact Information

For additional technical Information and Requirements:
Email: contact.mec@mec-mmic.com Tel: +39 0516333403

For sales Information and Requirements:
Email: sales@mec-mmic.com Tel: +39 0637511124

Notice

The furnished information is believed to be reliable. However, performances and specifications contained herein are based on preliminary characterizations and then susceptible to possible variations. On the basis of customer requirements the product can be tested and characterized in specific operating conditions and, if needed, tuned to meet custom specifications.
The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.