
### **Ku-Band GaAs HBT VCO**





## **Product Description**

MECVCOKU1 is a monolithic microwave integrated circuit (MMIC) voltage controlled oscillator (VCO) designed and tested by MEC for Ku-Band applications.

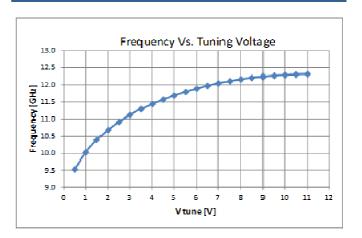
In addition to the Ku band RF output (RFout), this VCO provides a half frequency output (RFout/2).

In the frequency range from 10.4 GHz to 12.3 GHz MECVCOKU1 provides more than 7 dBm of output power and a phase noise of about -75 dBc/Hz at 10 KHz offset with 5 V supply voltage.

#### **Main Features**

- GaAs HBT Technology
- Dual output frequency range: f<sub>out</sub> and f<sub>out</sub>/2

Vt=Vt1 from 1.5 to 11 V $f_{out} = 10.39 \text{ to } 12.31 \text{ GHz}$ 


Phase Noise =  $-75 \text{ dBc/Hz} \otimes 10 \text{ kHz}$ 

- No external resonator needed
- Chip size: 2.6 x 3 mm<sup>2</sup>

### **Typical Applications**

- Point to point and multipoint radios
- Test equipment and industrial controls
- SAR antennas

#### **Measured Data**

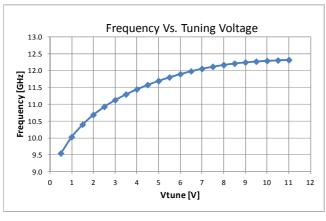


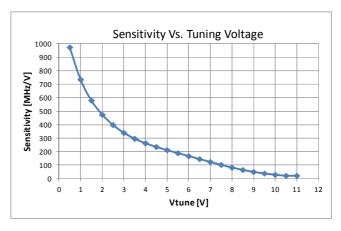
## **Ku-Band GaAs HBT VCO**

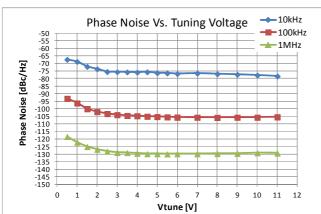


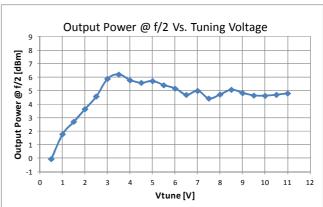
# Main Characteristics

Test Conditions:  $T_{base\_plate} = 25 \, ^{\circ}C$ 

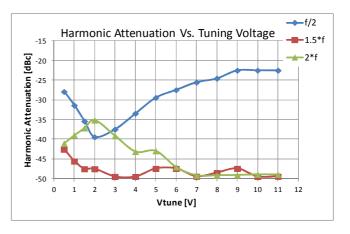

| Parameter                      | Min   | Тур         | Max   | Unit             |
|--------------------------------|-------|-------------|-------|------------------|
| Frequency Range                |       |             |       |                  |
| Output Frequency (fout)        | 10.39 |             | 12.31 | GHz              |
| Half Output Frequency (fout/2) | 5.19  |             | 6.15  | GHz              |
| Output Power                   |       |             |       |                  |
| RFout                          | 7     |             | 10.1  | dBm              |
| RFout/2                        | 2.7   |             | 6.2   | dBm              |
| Phase Noise                    |       |             |       |                  |
| @ 10 kHz Offset                |       | 75          |       | 4D - /II-        |
| @ 100 kHz Offset               |       | -75<br>-105 |       | dBc/Hz<br>dBc/Hz |
| @ 1 MHz Offset                 |       | -103        |       | dBc/Hz           |
|                                |       | -130        |       | GDC/11Z          |
| Tuning Voltage (Vt=Vt1)        | 1.5   |             | 11    | V                |
| Supply Voltage (Vcc)           |       | 5           |       | V                |
| Supply Current (Icc)           |       | 143         |       | mA               |
| Harmonic Attenuation           |       |             |       |                  |
| 1/2                            | -22   |             |       | dBc              |
| 3/2                            | -47   |             |       | dBc              |
| 2nd                            | -35   |             |       | dBc              |
| Pulling (into a 2.0:1 VSWR)    |       |             | 0.4   | MHz_pp           |
| Pushing @ Vtune=5V             |       |             | 12.8  | MHz/V            |
| Sensitivity                    |       |             | 580   | MHz/V            |
| DC Power Consumption           |       | 0.715       |       | W                |


### **Ku-Band GaAs HBT VCO**





### **Measurement Performances**

Test Conditions:  $T_{base\_plate} = 25$  °C, Vcc = 5 V, Icc = 143 mA

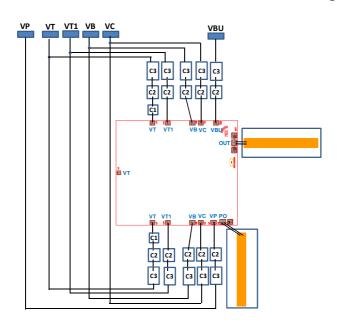











### **Ku-Band GaAs HBT VCO**



## **Bond Pad Configuration & Assembly Recommendations**

### 1st configuration



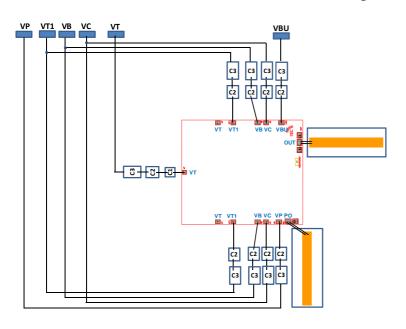
| Bond Pad#        | Connection                         | External<br>Components                                  |
|------------------|------------------------------------|---------------------------------------------------------|
| OUT and PO       | 2 Bonding Wires<br>L_bond = 0.3 nH |                                                         |
| VT<br>Vtuning    | L_bond≤1 nH                        | C1 = 100 pF/10V<br>C2 = 10 nF/10V<br>$C3 = 1 \mu F/10V$ |
| VT1<br>Vtuning   | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |
| VB<br>Vbase      | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |
| VC<br>Vcollector | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |
| VBU<br>Vbuffer   | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |
| VP<br>Vbufferf/2 | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |



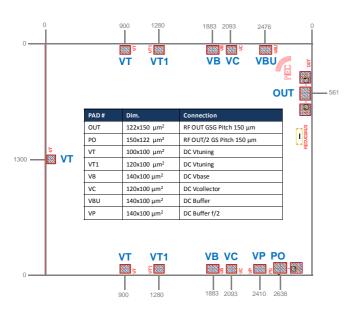
Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.


Gold wire must be used for connections.

### **Ku-Band GaAs HBT VCO**




## **Bond Pad Configuration & Assembly Recommendations**

### 2nd configuration



| Bond Pad#        | Connection                         | External<br>Components                                  |  |
|------------------|------------------------------------|---------------------------------------------------------|--|
| OUT and PO       | 2 Bonding Wires<br>L_bond = 0.3 nH |                                                         |  |
| VT<br>Vtuning    | L_bond≤1 nH                        | C1 = 100 pF/10V<br>C2 = 10 nF/10V<br>$C3 = 1 \mu F/10V$ |  |
| VT1<br>Vtuning   | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |  |
| VB<br>Vbase      | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |  |
| VC<br>Vcollector | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |  |
| VBU<br>Vbuffer   | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |  |
| VP<br>Vbufferf/2 | L_bond≤1 nH                        | C2 = 10nF/10V<br>$C3 = 1\mu F/10V$                      |  |



Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.

Gold wire must be used for connections.

### **Ku-Band GaAs HBT VCO**



### **Bias Procedure**

#### **Bias-Up**

- 1. Set VT and Vt1 to 5 V and turn on.
- 2. Set VBU to 0 V and turn on.
- 3. Set VP to 0 V and turn on.
- 4. Increase VBU to 5 V (IBU  $\approx$  18 mA).
- 5. Increase VP to 5 V (IP  $\approx$  25 mA).
- 6. Set VB to 0 V and turn on.
- 7. Set VC to 0 V and turn on.
- 8. Increase VC to 5 V.
- 9. Increase VB to 5 V (IB  $\approx$  26 mA, IC = 74 mA).
- 10. Sweep VT and Vt1 from 0.5 V to 11 V.

#### **Bias-Down**

- 1. Set VB to 0 V and turn off.
- 2. Set VC to 0 V and turn off.
- 3. Set VP to 0 V and turn off.
- 4. Set VBU to 0 V and turn off.
- 5. Turn off VT and Vt1.

- 6/7 -

### **Ku-Band GaAs HBT VCO**



### **Contact Information**

For additional technical Information and Requirements:

Email: contact.mec@mec-mmic.com Tel: +39 0516333403

For sales Information and Requirements:

Email: <u>sales@mec-mmic.com</u>
Tel: +39 0637511124

### Notice

The furbished information is believed to be reliable. However, performances and specifications contained herein are based on preliminary characterizations and then susceptible to possible variations. On the basis of customer requirements the product can be tested and characterized in specific operating conditions and, if needed, tuned to meet custom specifications.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.